极限的保号性有什么作用

发布网友 发布时间:2022-04-22 05:21

我来回答

3个回答

热心网友 时间:2023-06-22 19:23

限定极限的范围

保号性指满足一定条件(例如极限存在或连续)的函数在局部范围内函数值的符号保持恒正或恒负。

需要注意的地方是,这一性质,跟数列极限的定义有关联,数列的极限就是从某一项之后开始算,跟前面的项不是很有关系。保号性也是从某一项之后才开始算的哦,一定要注意“n>N”这一条件。



扩展资料:

局部保号性指的就是如果函数在某一点的极限不等于零,那么在这个点的临近(就是定理中的空心邻域),函数具有保持符号(与极限的符号相同)的性质. 

有时,我们会遇到一些已知极限的符号,需要说明函数在一定范围内也是正数或者负数的时候,就可以考虑使用这个性质了.

参考资料来源:百度百科—保号性

热心网友 时间:2023-06-22 19:24

局部保号性指的就是如果函数在某一点的极限不等于零,那么在这个点的临近(就是定理中的空心邻域),函数具有保持符号(与极限的符号相同)的性质.

有时,我们会遇到一些已知极限的符号,需要说明函数在一定范围内也是正数或者负数的时候,就可以考虑使用这个性质了.

这个性质在解一些证明的时候非常有用,在对函数的符号有明确要求的时候,用这个性质往往可以取到非常好的效果.

空心邻域就表明在x0的某个邻域内,除去x0这个点,这个概念在函数极限里面经常出现,意味着可以不用考虑x0这个点.

保号性是指满足一定条件(例如极限存在或连续)的函数在局部范围内函数值的符号保持恒正或恒负的性质。

函数在一定点集  上有定义,且函数值恒正(或恒负),则称函数  在一定点集  上具有保号性。

热心网友 时间:2023-06-22 19:24

局部保号性指的就是如果函数在某一点的极限不等于零,那么在这个点的临近(就是定理中的空心邻域),函数具有保持符号(与极限的符号相同)的性质.
有时,我们会遇到一些已知极限的符号,需要说明函数在一定范围内也是正数或者负数的时候,就可以考虑使用这个性质了.
这个性质在解一些证明的时候非常有用,在对函数的符号有明确要求的时候,用这个性质往往可以取到非常好的效果.
空心邻域就表明在x0的某个邻域内,除去x0这个点,这个概念在函数极限里面经常出现,意味着可以不用考虑x0这个点.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com