发布网友 发布时间:2022-04-22 01:07
共2个回答
热心网友 时间:2022-06-29 18:28
农业大数据
农业大数据是融合了农业地域性、季节性、多样性、周期性等自身特征后产生的来源广泛、类型多样、结构复杂、具有潜在价值,并难以应用通常方法处理和分析的数据集合。它保留了大数据自身具有的规模巨大(volume)、类型多样(variety)、价值密度低(value)、处理速度快(velocity)、精确度高(veracity)和复杂度高(complexity)等基本特征,并使农业内部的信息流得到了延展和深化。
农业大数据类型
根据农业的产业链条划分,目前农业大数据主要集中在农业环境与资源、农业生产、农业市场和农业管理等领域。
(1)农业自然资源与环境数据。主要包括土地资源数据、水资源数据、气象资源数据、生物资源数据和灾害数据。
(2)农业生产数据包括种植业生产数据和养殖业生产数据。其中,种植业生产数据包括良种信息、地块耕种历史信息、育苗信息、播种信息、农药信息、化肥信息、农膜信息、灌溉信息、农机信息和农情信息;养殖业生产数据主要包括个体系谱信息、个体特征信息、饲料结构信息、圈舍环境信息、疫情情况等。
(3)农业市场数据包括市场供求信息、价格行情、生产资料市场信息、价格及利润、流通市场和国际市场信息等。
(4)农业管理数据主要包括国民经济基本信息、国内生产信息、贸易信息、国际农产品动态信息和突发事件信息等。
农业大数据技术
如果将农业大数据的应用比作“汽车”,支撑起这些“汽车”运行的“公路”就是云计算。云计算技术在数据存储、管理与分析等方面的支撑,使得农业大数据彰显出巨大的价值。
根据大数据处理的生命周期,大数据的技术体系包括大数据的采集与预处理技术、大数据存储与管理技术、大数据计算模式与系统、大数据分析与挖掘技术、大数据可视化分析技术及大数据安全技术等。
随着海量信息的爆发,农业跨步迈入大数据时代。统一数据标准和规范,构建农业基准数据(即以农业信息的标准和规范为基础,以现代信息技术为手段,收集并整理的产前、产中、产后各环节的基础精准数据),推动数据标准化,并综合使用农业大数据的相关技术,建设农业大数据平台,对农业大数据进行分析、处理和展示,并将所得结果应用到农业的各个环节,才能更好的推动我国传统农业向现代农业的转型,助力我国农业信息化和农业现代化的融合。
热心网友 时间:2022-06-29 18:29
农业大数据是融合了农业地域性、季节性、多样性、周期性等自身特征后产生的来源广泛、类型多样、结构复杂、具有潜在价值,并难以应用通常方法处理和分析的数据集合。
主要从以下几个方面分析:
一新产品的竞争情报分析、产品敏捷测试等都需要数据分析,后期产品迭代优化还是需要数据分析,采集用户行为、习惯、评价等数据;
二用户流量、促销、顾客关系管理等需要数据分析;
三是公司数据制定和标准建设、各部门数据打通,数据化管理等工作需要数据分析;
四是数据情报和数据预测。
从以上四个方面看商业分析能力和业务知识能力就显得尤为重要,这个时候是考验分析师的业务理解能力及通过数据为企业解决实际问题的能力了。比如分析师的分析流程、分析思维、分析技能、展示说服能力。可以考虑进这方面专业的公司,或者运气好碰到有经验的老师带你一段时间,像我运气不错刚进了决明就碰到了老师带我,进步的很快,所以现在基本把这一套搞得很熟练了。