发布网友 发布时间:2022-04-25 00:04
共2个回答
热心网友 时间:2023-10-16 14:19
|| ||, 这个数学符号是范数。
一、范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。
注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。
二、如果线性空间上定义了范数,则称之为赋范线性空间。
1、范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。
注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。
2、矩阵范数(matrix norm)是数学中矩阵论、线性代数、泛函分析等领域中常见的基本概念,是将一定的矩阵空间建立为赋范向量空间时为矩阵装备的范数。应用中常将有限维赋范向量空间之间的映射以矩阵的形式表现,这时映射空间上装备的范数也可以通过矩阵范数的形式表达。
矩阵范数却不存在公认唯一的度量方式。
范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
参考资料:范数_百度百科
热心网友 时间:2023-10-16 14:20
若有A∝B,则表示A与B成正相关(即A增大,B也增大),若符号∝反过来,则表示A与B成负相关