发布网友 发布时间:2022-04-24 06:27
共1个回答
热心网友 时间:2022-06-16 20:09
冷热电联产系统概述
传统动力系统的技术开发以及商业化的努力主要着眼于单独的设备,例如,集中供热、直燃式 *空调及发电设备。这些设备的共同问题在于单一目标下的能耗高,在忽视环境影响和不合理的能源价格情况下,具有一定的经济效益。但是,从科学技术角度出发,这些设备都尚未达到有限能源资源的高效和综合利用。 冷热电联产(CCHP)是一种建立在能的梯级利用概念基础上,将制冷、供热(采暖和供热水) 及发电过程一体化的多联产总能系统,目的在于提高能源利用效率,减少碳化物及有害气体的排放。 与集中式发电-远程送电比较,CCHP 可以大大提高能源利用效率:大型发电厂的发电效率一般为35%-55%,扣除厂用电和线损率,终端的利用效率只能达到30-47%。而CCHP 的能源利用率可达 到90%,没有输电损耗;另外,CCHP 在降低碳和污染空气的排放物方面具有很大的潜力:据有关 专家估算,如果从2000 年起每年有4%的现有建筑的供电、供暖和供冷采用CCHP,从2005 年起 25%的新建建筑及从2010 年起50%的新建建筑均采用CCHP 的话,到2020 年的二氧化碳的排放量 将减少19%。如果将现有建筑实施CCHP 的比例从4%提高到8%,到2020 年二氧化碳的排放量将 减少30%[13,14]。
冷热电系统方案选择
典型冷热电三联产系统一般包括:动力系统和发电机(供电)、余热回收装置(供热)、制冷系 统(供冷)等。针对不同的用户需求,冷热电联产系统方案的可选择范围很大:与热、电联产技术 有关的选择有蒸汽轮机驱动的的外燃烧式和燃气轮机驱动的内燃烧式方案;与制冷方式有关的选择 有压缩式、吸收式或其它热驱动的制冷方式。另外,供热、供冷热源还有直接和间接方式之分。
在外燃烧式的热电联产应用中,由于背压汽轮机常常受到区域供热负荷的*不能按经济规模 设置,多数是相当小的和低效率的;而对于内燃烧式方案,由于通过技术革新已经生产出了尺寸小、 重量轻、污染排放低、燃料适应性广、具有高机械效率和高排气温度的燃气轮机,同时燃气轮机的 容量范围很宽:从几十到数百kW 的微型燃气轮机到300 MW 以上的大型燃气轮机,它们用于热电 联产时既发电又产汽,兼有高机械效率(30%~40% )和高的热效率(70%~80%)。所以在有燃气和燃 油的地方,燃气轮机正日益取代汽轮机在热电联产中的地位[16]。
压缩式制冷是消耗外功并通过旋转轴传递给压缩机进行制冷的,通过机械能的分配,可以调节 电量和冷量的比例;而吸收式制冷是耗费低温位热能来达到制冷的目的的,通过把来自热电联产的 一部分或全部热能用于驱动吸收式制冷系统,根据对热量和冷量的需求进行调节和优化。
常见的吸收式制冷系统
目前最为常见的吸收式制冷系统为溴化锂吸收式制冷系统和氨吸收式制冷系统。前者制冷温度 由于受制冷剂的*,不能低于5 ℃,一般仅用于家用空调;后者的制冷温度范围非常大(+10 ℃~ .50 ℃), 不仅可用于空调,而且可用于0 ℃以下的制冷场所。同时,氨吸收式制冷系统可以利用 低品位的余热,所需热源的温度只要达到80 ℃以上就能利用,从而使能源得到充分合理的利用; 而且氨吸收式制冷系统还具有节电、设备制造容易、对安装场所要求不高、系统运行平稳可靠,噪 声小,便于调节、设备易于维修、可以在同一系统内提供给用户不同温度的冷量、单个系统的制冷 量很大等优点。直接热源制冷和间接热源制冷的选择和分配原则 直接热源制冷(燃气轮机排烟作为制冷热源)和间接热源制冷(由余热锅炉回收燃气轮机排气 余热产生蒸汽,再利用蒸汽作为制冷热源)的选择和分配原则:主要考虑过程效率、换热器的经济 性、及冷热电负荷分配的灵活性等方面考虑。直接热源制冷无需经过余热锅炉转换为蒸汽,能的品 位损失小、能量利用率高,但由于烟气为加热工质,所以换热器的设计需要考虑高温腐蚀问题;间 接热源制冷由于采用两次换热,能量利用率低,过程能的品位损失大,但由于是蒸汽为加热工质, 对换热器的材料要求较低。另外,直接热源制冷的负荷分配灵活性差。
冷热电系统模拟分析
为了揭示联产系统具有更高能源利用率的原因,本文对冷热电联产方案和简单的分布式供电系 统作了比较。所设计的三联产方案的系统流程如图1 所示。以天然气为燃料的燃气轮机主要承担供 应电力的任务,燃气轮机透平排烟首先进入回热器预热送往燃烧室的空气,然后进入余热回收器回 收中低温热量。余热回收器的冷侧主要有两股循环物流:物流1 为5bar 的饱和蒸汽,被送往溴化锂 吸收式制冷子系统作为制冷热源,经泵补偿压力损失后,回水为5bar 的饱和水;物流2 为90℃的 热水,被送入城市热网作为生活用热的热源,回水温度为70℃。 而电力单供系统选用TG80 有回热的微型燃气轮机,主要参数如
技术条件和基本假设
考虑到当前的技术水平,模拟过程中,各系统的主要热力参数为:选取英国宝曼公司的微型燃 气轮机TG80 作为主要发电设备,其主要热力参数如表3 所示;余热回收器为气-液换热设备,节点 温差不低于20 ℃,由于采用相对洁净的天然气燃料,选择酸*温度为90 ℃;热用户主要为城 市采暖,进入热网的热水温度为90 ℃,回水温度为70 ℃;方案所采用的双效溴化锂制冷循环所 需热源为151.8 ℃饱和蒸汽,制冷温度为15 ℃,制冷性能系数COP 为1.2;方案2 采用的压缩式 制冷-热泵循环中,制冷温度为15 ℃,供热参数为70 ℃~90 ℃热水,热泵COP 为3。环境温度 25 ℃,标准天然气燃料低位发热量为34.88 MJ/m3。
模拟分析结果
三联产方案的能耗分析结果与分供系统能耗的比较如表4 所示。其中制冷系统采用电空调, 系统输入的能量为电力而非天然气的化学能,为了比较方便,我们采用如下方法将此系统所消耗的 电能折算为天然气耗量:
燃料消耗量=电力消耗量×(电力分供系统燃料消耗量/ 系统供电出力)
从表中可以看出,满足同样的电、热、冷需求,采用联产方式需消耗天然气31.8 m3/hr,而采用 分供方式则需要消耗天然气量为三个分供系统能耗的总和,为54.98 m3/hr。联产系统相对于分供系 随着人民生活水平的提高,能源消费日益增长,能源动力系统愈来愈向大容量、高度集中的模 式发展。然而,分布式供电是集中供电不可缺少的重要补充。它因灵活的变负荷性、低的初投资、 很高的供电可靠性和很小的输电损失等特点在世界范围内越来越受到重视。