谁能给我讲下相对论?

发布网友 发布时间:2022-04-24 15:38

我来回答

3个回答

热心网友 时间:2023-10-19 22:33

狭义论原理
  物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
  伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
  
  【狭义证明】
  相对*式及证明
  符号 单位 符号 单位
  坐标(x,y,z):m 力F(f): N
  时间t(T): s 质量m(M): kg
  位移r: m 动量p: kg*m/s
  速度v(u): m/s 能量E: J
  加速度a: m/s^2 冲量: N*s
  长度l(L): m 动能Ek: J
  路程s(S): m 势能Ep: J
  角速度ω: rad/s 力矩: N*m
  角加速度: rad/s^2α 功率P: W
  一:
  牛顿力学(预备知识)
  (一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt
  (2)a=dv/dt,v=v0+∫adt
  (注:两式中左式为微分形式,右式为积分形式)
  当v不变时,(1)表示匀速直线运动。
  当a不变时,(2)表示匀变速直线运动。
  只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
  (二):质点动力学:
  (1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
  (2)牛二:物体加速度与合外力成正比与质量成反比。
  F=ma=mdv/dt=dp/dt
  (3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡。
  (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
  F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
  动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)
  动量守恒:合外力为零时,系统动量保持不变。
  动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)
  机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2
  (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)
  二、狭义相对论力学
  (注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)
  1.基本原理:(1)相对性原理:所有惯性系都是等价的。
  (2)光速不变原理:真空中的光速是与惯性系无关的常数。
  (此处先给出公式再给出证明)
  2.洛仑兹坐标变换:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.速度变换:
  V(x)=(v(x)-u)/(1-v(x)u/c^2)
  V(y)=v(y)/(γ(1-v(x)u/c^2))
  V(z)=v(z)/(γ(1-v(x)u/c^2))
  4.尺缩效应:△L=△l/γ或dL=dl/γ
  5.钟慢效应:△t=γ△τ或dt=dτ/γ
  6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)
  (光源与探测器在一条直线上运动。)
  7.动量表达式:P=Mv=γmv,即M=γm
  8.相对论力学基本方程:F=dP/dt
  9.质能方程:E=Mc^2
  10.能量动量关系:E^2=(E0)^2+P^2c^2
  (注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)
  *******************************************************************************
  三、三维证明
  1.由实验总结出的公理,无法证明。
  2.洛仑兹变换:
  设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
  可令
  x=k(X+uT) (1).
  又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.
  故有
  X=k(x-ut) (2).
  对于y,z,Y,Z皆与速度无关,可得
  Y=y (3).
  Z=z (4).
  将(2)代入(1)可得:x=k^2(x-ut)+kuT,即
  T=kt+((1-k^2)/(ku))x (5).
  (1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.
  代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:
  k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.速度变换:
  V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))
  =(dx/dt-u)/(1-(dx/dt)u/c^2)
  =(v(x)-u)/(1-v(x)u/c^2)
  同理可得V(y),V(z)的表达式。
  4.尺缩效应:
  B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
  5.钟慢效应:
  由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.
  (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)
  6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)
  B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为
  △t(a)=γ△t(b) (1).
  探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则
  △t(N)=(1+β)△t(a) (2).
  相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即
  ν(b)△t(b)=ν(a)△t(N) (3).
  由以上三式可得:
  ν(a)=sqr((1-β)/(1+β))ν(b).
  7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)
  牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。
  牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
  8.相对论力学基本方程:
  由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)
  9.质能方程:
  Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv
  =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2
  =Mv^2+Mc^2(1-v^2/c^2)-mc^2
  =Mc^2-mc^2
  即E=Mc^2=Ek+mc^2
  10.能量动量关系:
  E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2
  *******************************************************************************
  四、四维证明:
  1.公理,无法证明。
  2.坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,
  dS^2=dx^2+dy^2+dz^2+(icdt)^2 (1).
  则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。
  由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)
  X=xcosφ+(ict)sinφ
  icT=-xsinφ+(ict)cosφ
  Y=y
  Z=z
  当X=0时,x=ut,则0=utcosφ+ictsinφ
  得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.4.5.6.略。
  7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)
  令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。
  则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)
  四维动量:P=mV=(γmv,icγm)=(Mv,icM)
  四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)
  四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)
  则f=mdV/dτ=mω
  8.略。
  9.质能方程:
  fV=mωV=m(γ^5va+i^2γ^5va)=0
  故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)
  由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))
  故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2
  故E=Mc^2=Ek+mc^2广义相对论的概念
  相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。
  相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。
  空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。而且不存在没有物质的空间,因为就算有你也永远无法发现,因为当你看见它的同时,它就有了物质,最起码是光。
  相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的*,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。
  ·广义*式
  根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空”的思想,爱因斯坦给出了著名的引力场方程(Einstein's field equation): <math>R_ - \fracg_ R = - 8 \pi {G \over c} T_ </math>
  其中 G 为牛顿万有引力常数,这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。 该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: <math>R_ - \fracg_ R + \Lambda g_= - 8 \pi {G \over c} T_ </math>
  ·广义论原理
  由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。
  ·广义论的验证
  爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。直到最近才增加了第四个验证:(4)雷达回波的时间延迟。
  (1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。5M产生的红移,结果与相对论预言一致。
  (2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hr和质能公式E=MC求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍。1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内。引起误差的主要原因是太阳大气对光线的偏折。最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会。精密测量进一步证实了相对论的结论。
  (3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。
  (4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。
  (5其他实验参见:【相对论验证实验系列】 http://tieba.baidu.com/f?kz=323205530
  仅仅依靠这些实验不足以说明相对论的正确性,只能说明它是比牛顿引力理论更精确的理论,因为它既包含牛顿引力论,又可以解释牛顿理论无法解释的现象。但不能保证这就是最好的理论,因此,广义相对论仍面临考验。 具体见 http://ke.baidu.com/view/4243.htm#2

热心网友 时间:2023-10-19 22:33

相对论,打个比方简单的说你上一节无聊的课感觉时间特别长,而和你心爱的人在一起,就会觉得每一分钟都那么短暂

热心网友 时间:2023-10-19 22:34

答案好长你可以看一下 http://zhidao.baidu.com/question/3213587.html

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com