发布网友 发布时间:2022-04-21 06:06
共1个回答
热心网友 时间:2022-06-18 09:45
三阶伴随矩阵的求法:主对角元素是将原矩阵该元素所在行列去掉再求行列式。非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y)x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。
解题方法
对于三阶矩阵
a11 a12 a13
a21 a22 a23
a31 a32 a33
首先求出各代数余子式
A11=(-1)^2*(a22*a33-a23*a32)=a22*a33-a23*a32
A12=(-1)^3*(a21*a33-a23*a31)=-a21*a33+a23*a31
A13=(-1)^4*(a21*a32-a22*a31)=a21*a32-a22*a31
A21=(-1)^3*(a12*a33-a13*a32)=-a12*a33+a13*a32
……
A33=(-1)^6*(a11*a22-a12*a21)=a11*a22-a12*a21
然后伴随矩阵就是
A11 A12 A13
A21 A22 A23
A31 A32 A33然后再转置,就是伴随矩阵。