发布网友 发布时间:2022-04-23 10:21
共5个回答
热心网友 时间:2023-10-11 08:46
两者的区别:
1、变量按其数值表现是否连续。
连续变量是一直叠加上去的,增长量可以划分为固定的单位,即:1,2,3…… 例如:一个人的身高,他首先长到1.51,然后才能长到1.52,1.53……。
而离散变量则是通过计数方式取得的,即是对所要统计的对象进行计数,增长量非固定的,如:一个地区的企业数目可以是今年只有一家,而第二年开了十家;一个企业的职工人数今年只有10人,第二年一次招聘了20人等。
2、变量值的变动幅度不同。
对离散变量,如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如居民家庭按儿童数或人口数分组,均可采用单项式分组。
离散变量如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。
也就是说,离散变量根据情况既可用单项式分组,也可用组距式分组。在组距式分组中,相邻组既可以有确定的上下限,也可将相邻组的组限重叠。
1、离散变量是指其数值只能用自然数或整数单位计算的则为离散变量。例如,企业个数、职工人数、设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得。
2、而连续变量是在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如,生产零件的规格尺寸、人体测量的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。
3、离散变量的概率分布,常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。
参考资料:百度百科-连续变量、百度百科-离散变量
热心网友 时间:2023-10-11 08:47
1 离散变量是指其数值只能用自然数或整数单位计算的则为离散变量.例如,企业个数,职工人数,设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得.
2 反之,在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值.例如,生产零件的规格尺寸,人体测量的身高,体重,胸围等为连续变量,其数值只能用测量或计量的方法取得.
3 如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。
扩展资料:
变量按其数值表现是否连续,分为连续变量和离散变量。离散变量指变量值可以按一定顺序一一列举,通常以整数位取值的变量。如职工人数、工厂数、机器台数等。有些性质上属于连续变量的现象也按整数取值,即可以把它们当做离散变量来看待。例如年龄、评定成绩等虽属连续变量,但一般按整数计算,按离散变量来处理。离散变量的数值用计数的方法取得。
离散变量的概率分布,常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。
连续型随机变量是指如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。例如,一批电子元件的寿命、实际中常遇到的测量误差等都是连续型随机变量。
对于随机变量X,若存在一个非负的可积函数f(x),使得对任意实数x,则称X为连续性随机变量。其中f(x)为X的概率分布密度函数,简称概率密度记为X~f(x)。
相关性质:
由定义可知,
若f(x)在点x连续,则有F’(x)=f(x)
f(x)是可积,则它的原函数F(x)连续;
3.对于任意两个实数x1,x2(假设x1<x2),都有:
X取任一指定实数值a的概率, ,这样在计算连续性随机变量落在某一区间的概率时,可以不必区分该区间是开区间还是闭区间。
有
尽管P{X=a}=0,但{X=a}并不是不可能事件。同样,一个事件的概率为1,并不意味这个事件一定是必然事件。
当提到一个随机变量X的概率分布,指的是它的分布函数,当X是连续型时指的是它的概率密度,当X是离散型时指的是它的分布律。
变量按其数值表现是否连续,分为连续变量和离散变量。连续变量的数值是连接不断的,相邻两值之间可作无限分割,例如,身高、体重、年龄等都是连续变量。
简单随机取样就是重复进行同一随机试验,也就是指每次试验都在同一组条件下进行,因而每次试验得到什么结果,其可能程度都是固定不变的。对于有限总体,简单随机抽样意味着每次抽出一个元素后,放还再抽,若不放还,总体的成分将有所改变,那么再抽时,出现各种结果的可能程度就相对地改变了。至于无限总体则没有区分“放回”或“不放回”的必要。
参考资料:百度百科-连续型变量 百度百科-离散变量
热心网友 时间:2023-10-11 08:47
一、获取方式不同
离散型变量:离散型变量则是通过计数方式取得的,即是对所要统计的对象进行计数,增长量非固定的。
连续型变量:连续型变量是一直叠加上去的,增长量可以划分为固定的单位。
二、域不同
离散型变量:离散型变量的域(即对象的集合S)是离散的。
连续型变量:连续型变量的域(即对象的集合S)是连续的。
二、分组方式不同
离散型变量:如果变量值的变动幅度小,就可以一个变量值对应一组,称单项式分组。如果变量值的变动幅度很大,变量值的个数很多,则把整个变量值依次划分为几个区间,各个变量值则按其大小确定所归并的区间,区间的距离称为组距,这样的分组称为组距式分组。
连续型变量:连续型变量由于不能一一列举其变量值,只能采用组距式的分组方式,且相邻的组限必须重叠。
扩展资料
离散变量的概率分布
1、二项分布
2、泊松分布
3、二点分布
3、几何分布
4、超几何分布
参考资料来源:百度百科-离散变量
百度百科-连续变量
热心网友 时间:2023-10-11 08:48
离散变量是指其数值只能用自然数或整数单位计算的则为离散变量.例如,企业个数,职工人数,设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得.
反之,在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值.例如,生产零件的规格尺寸,人体测量的身高,体重,胸围等为连续变量,其数值只能用测量或计量的方法取得.
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,
比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,
x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量。
热心网友 时间:2023-10-11 08:48
接楼上的。
采取单项式变量数列和组距式数列分组,主要取决于变量的类型和变量的变动幅度。
对于连续型变量,一般只能编制组距式变量数列;
对于离散型变量,如果变量值个数较多,并且变动幅度较大时,应该编制组距式变量数列, 对于变量值较少的离散型数据,一般编制单项式变量数列。(变量值的多少,跟数据量的多少是不一样的,有时候数据量很多,但是变量值却很少。比如研究一个班(110人)的年龄结构,有110个数据,但是有可能只有两三个变量值,假设最小的20岁,最大的22岁,那么就只有三个变量值,那么分组时就按照单项式变量数列分组)