发布网友 发布时间:2022-04-23 03:07
共5个回答
热心网友 时间:2023-07-05 15:38
这个问题,我们可以根据乘除法的关系从以下两方面来分析、理解。一方面,如果被除数不是0,除数是0,比如5÷0=?根据“被除数=商除数”的关系,求5÷0=?就是要找一个数,使它与0相乘等于被除数5。我们知道,任何数与0相乘都等于0,而绝不会等于5。这就是说,被除数不是0,除数是0,商是不存在的。
另一方面,如果被除数和除数都是0,即0÷0=?,就是说要找一个数,使它与0相乘等于0。前面已说过,任何数与0相乘都等于0,与0相乘等于0的数,有无限多个,所以0÷0的商不是一个确定的数,这就不符合四则运算的结果是惟一的这个要求,所以0÷0也是没有意义的。
根据上述两种情况可以看出“0”是不能做除数的。
热心网友 时间:2023-07-05 15:39
说得简单一点吧,我们从两个方面分析:
1.当被除数是零,除数也是零时,我们可写成0÷0=X的形式,看商X是什么?根据乘法与除法互为逆运算的关系有:被除数=除数×商,这里除数已为零,商X无论是什么数(是正数、负数、零)、与零相乘都等于零。即0=0×X,这样商X是不固定的,这明显破坏了四则运算结果的唯一性。这种情况下我们简单地说:“零做除数得不到固定的商”。
2.如果被除数不是0,只有除数是0,那么可以举个例子:5÷0=X,那么无论X是多少,与除数0相乘都不会得到被除数5,只会得到0。这种情况我们可以简单地说:“零做除数无法还原”。
综上所述,因此说“0做除数没有意义”,或者说“0不能做除数”。
纯手打望采纳,谢谢
热心网友 时间:2023-07-05 15:39
01 规定一种运算,它的运算结果必须是存在的,而且应该是唯一确定的。当除数为“0”时,被除数不是“0”,商是不存在的;当除数为“0”时,被除数也是“0”,商得不到一个确定的数,所以0不能作为除数。
大家都知道“0”做除数没有意义。我们可以分两种情况加以说明。一种情况是:当除数是“0”,而被除数不是“0”,如7÷0,12÷0等。那就是要求出与“0”相乘的积不等于“0”的“商”来,0乘?=7,0×?=12。因为,任何数与“0”相乘的积都“0”,所以,在这种情况下,商是不存在的,除法计算没有结果。
另一种情况是:当除数是“0”,而且被除数也是“0”,如0÷0。那就是要求出与“0”相乘的积等于“0”的“商”来,0×?=0。因为,任何数与“0”相乘的积都是“0”,所以,在这种情况下,不能得到一个确定的商,商可以是任何数,即商有无限多个。
我们知道,规定一种运算,它的运算结果必须是存在的,而且应该是唯一确定的。但是,当除数为“0”时,被除数不是“0”,商是不存在的;当除数为“0”时,被除数也是“0”,商得不到一个确定的数。因此,必须明确规定“0”不能作除数。因为有了“0”不能作除数这条规定以后,在除法的基本性质中,被除数和除数同时乘以或除以相同的数(零除外),商不变。在分数的基本性质中,一个分数的分子和分母同时乘以或除以相同的数(零除外),分数的大小不变。在比的基本性质中,比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。“零除外”这三个字在完整表述除法、分数、比的基本性质时不能丢。
由此说明,在除法里,“0”不能作除数;对于分数来说,就是分母不能是“0”;对于比来说,就是比的后项不能是“0”。当然,应该强调的是,除法中的除数、分数中的分母、比的后项这三者不是一回事。“比”、“分数”和“除法”之间尽管有着上述的一些联系,但它们毕竟是三个不同的概念。“比”是指两个数(或量)的倍数关系,“分数”是一个数,“除法”是一种运算。
热心网友 时间:2023-07-05 15:40
0不能做除数,可以做被除数。
一个数与0相加,还得这个数。
一个数减去0,还得这个数。
两个相同的数相减,差是0。
0同任何数相乘,积都是0。
0除以不等于0的数,商是0。
一个数除以1,商还是这个数。
任何数同1相乘,还得这个数。
1除以不等于0的数,商是除数的倒数。
被除数和除数相同(都不是0),商是1。
0不能做除数。
热心网友 时间:2023-07-05 15:40
当0是除数的时候,也就是把被除数平均分成0份,但实际上没有这样的情况发生,就算被除数不分份,至少也是一份,所以,让0作除数没有意义。
另外,反过来看,如果0是除数,那么它与商相乘,就是被除数,不论商是什么,被除数总得0,这样被除数不能确定,所以,0不能作除数。