0的导数存在吗

发布网友 发布时间:2022-04-23 03:03

我来回答

2个回答

热心网友 时间:2023-10-12 17:46

对于可导函数(图像上各点切线斜率存在),图像是光滑的,极值点切线必是水平的,即极值点切线斜率为0,极值点导数为0。在导数为0的点的两侧若函数单调性一致,则此点不是极值点,如y=x^3在x=0处导数为0,但在原点两侧函数都是单调递增,x=0不是极值点
导数(Derivative)是微积分学中重要的基础概念,是函数的局部性质。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

热心网友 时间:2023-10-12 17:46

很高兴为您解答!
0是一个常数,所以导数存在,且其导数为0。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com