发布网友 发布时间:2022-04-19 23:57
共1个回答
好二三四 时间:2022-09-26 14:58
1、平面内与两定点F1、F2的距离的和等于常数2a的动点P的轨迹叫做椭圆。
2、平面内到定点F的距离与到定直线的距离之比为常数离心率的点的集合,其中定点F为椭圆的焦点,定直线称为椭圆的准线。
3、平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k值应满足一定的条件,即为排除斜率不存在的情况。
热心网友 时间:2023-09-06 22:53
椭圆(Ellipse)是指数学上平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹曲线。 椭圆是圆锥曲线的一种,即圆锥与平面的截线。[1]椭圆的周长等于特定的正弦曲线在一个周期内的长度。
中文名
椭圆
外文名
ellipse
别称
椭圆形
表达式
|PF1|+|PF2|=2a(2a>|F1F2|)
应用学科
数学
更多
椭圆简介
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。
也可以这样定义椭圆,椭圆是点的集合,点其到两个焦点的距离的和是固定数。
椭圆在物理,天文和工程方面很常见。
定义
第一定义
平面内与两定点、的距离的和等于常数()的动点P的轨迹叫做椭圆。
即:
其中两定点、叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。为椭圆的动点。
椭圆截与两焦点连线重合的直线所得的弦为长轴,长为。
椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为。
可变为
椭圆定义说明
。
第二定义
椭圆平面内到定点(c,0)的距离和到定直线:(不在上)的距离之比为常数(即离心率,0<e<1)的点的轨迹是椭圆。
其中定点为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是(焦点在x轴上),或(焦点在y轴上))。
其他定义
根据椭圆的一条重要性质:椭圆上的点与椭圆长轴(事实上只要是直径都可以)两端点连线的斜率之积是定值,定值为(前提是长轴平行于x轴。若长轴平行于y轴,比如焦点在y轴上的椭圆,可以得到斜率之积为 -a²/b²=1/(e²-1)),可以得出:
在坐标轴内,动点()到两定点()()的斜率乘积等于常数m(-1<m<0)。
注意:考虑到斜率不存在时不满足乘积为常数,所以无法取到,即该定义仅为去掉四个点的椭圆。
椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。