发布网友 发布时间:2022-04-21 22:26
共1个回答
热心网友 时间:2023-12-01 13:48
主成分分析和因子分析,不少人初次看到觉得非常相似。特别是spss中并没有专门处理主成分分析的模块,只是在因子分析过程中使用了主成分方法,导致有些人云里雾里,将其混淆。其实二者不管从原理还是在使用上,均有较大差异。
原理不同
主成分分析(Principal components analysis,PCA)基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
因子分析(Factor Analysis,FA)基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)
线性表示方向不同
主成分分析中则是把主成分表示成各变量的线性组合;
因子分析是把变量表示成各公因子的线性组合。
假设条件不同
主成分分析:不需要有假设(assumptions);
因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。