北师大版数学五年级上册《组合图形的面积》教学设计 三说材料
王 曦
【教学内容】北师大版五年级上册数学教科书第88页。
【设计理念】
主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
【教材分析】
学生在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。在此基础上学习组合图形,学习此部分知识,一方面可以巩固已学的基本图形,另一方面将所学的知识进行综合运用,提高学生综合解决问题的能力。在学生探索问题,解决问题的过程中渗透数学转化的思想,在学生灵活运用多种方法解决问题的过程中培养学生优化的意识,从而培养学生思维的灵活性。
【学情分析】
五年级的学生正在经历自主高效的实验,学生无论从自学能力,还是课堂的积极探索都有了喜人的变化,学生学习方式的变化更加促使老师要以学定教,学生在学习的过程中可能会有这样或那样的问题,特别是本节课要探究多种方法解决问题,虽然学生已经在三年级时学习了长方形与正方形的面积,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算。但对于组合图形面积的计算学生可能在解决此问题的策略——即数学的转化的思想上没有充分地认识,另外学生在理解用多种方法解决问题时没有优化方法的意识,需要教师的引导与点拨,但我相信学生在老师的引导下会完成本节课的任务。
【学习目标】
1.在自主探索的活动中,理解计算组合图形面积的多种方法。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确地解答。
3.能运用所学的知识,解决生活中组合图形的实际问题。
【教学重点】掌握求组合图形的面积的几种方法。
【教学难点】选择有效的方法解决实际问题。
【教学准备】多媒体课件
【教学过程】
课前谈话:
老师很高兴能和大家一起来上这节课。我相信:我们五()班全班同学都能把最精彩的一面展示出来。你们喜欢数学吗?想不想把数学学得very good 非常棒!老师告诉你学好数学的小诀窍:认真听,用心想,积极说。能不能做到这三点?让我们带着自信走进课堂!
【设计意图】 简单的几句话,拉近了学生与老师的距离,关注学生的情感体验,同时渗透良好的学习习惯的培养。九个字书写在黑板上以提示学生。
一、课题导入。
1.老师今天给大家带来了一些漂亮的图片,来欣赏一下。
(多媒体出示小鱼图、火箭、房屋平面设计图、中队队旗等生活中的组合图形。)
一起说说你看到了什么?小鱼图是由两个三角形组成的……引导学生说出每幅图是怎样组成的。你们还记得它们的面积公式吗?
2.教师小结:上面的每个图形都是由我们学过的图形组成的,像这样由几个简单的图形组成的图形叫组合图形。这节课,我们就来研究组合图形的面积。(板书课题)
【设计意图】:课开始,充分发挥多媒体的优势,呈现学生熟悉的、生活中的组合图形,给学生视觉上的刺激。唤醒学生的已有认知,激发学生的求知欲。
二、展示目标,师生共同解读目标。(关键词:理解方法,解决问题)板书关键词。
【设计意图】:使学生明确本节课所学内容,确立所要达成的目标。
三、自主探究,获取新知
1.联系生活,提出问题。
(1)小华家新买了住房,计划在客厅铺地板。请你估计他家至少买多少平方米地板,再实际算一算。(出示课件)客厅平面图。
【设计意图】:在实际问题情境中激发学生探索问题的兴趣,从而产生自主学习的动机。
2.自主探究,解决问题。
教师课件出示导学提纲:阅读教材第75页,思考下列问题。
(1)我们已经学过哪些图形的面积?怎样求它们的面积?
(2)请你估一估小华家至少买多少平米的地板?试说出你的理由?
(3)计算地板面积,你还有哪些办法?尝试用画图的方法说明~
(4 )你能举例说一说计算组合图形面积的方法吗?
3.学生先自学然后组内交流。
(教师预设):
A. 学生可能转化的图形有:
B .学生可能会运用多种方法求出客厅的面积,但是不清楚解决此问题的策略——即转化的数学思想。
4 .教师深入到小组与学生共同研究问题,了解学生的自学情况。
5.学生在学习单的正面尝试解答,老师巡视,让学生把不同的转化方法展示到黑板上。
四 、展示汇报:
1 .各组按展示到黑板上的转化方法做汇报,学生讲解自己的思路。
【设计意图】计算组合图形的面积最重要的一步是运用转化思想把图形分割或添补成几个基本图形。把转化的过程和计算的过程分解开来进行,有效地突破了难点,在学生在转化的过程中思维真正的动起来。上黑板贴出学生的探究结果,让学生讲解自己的思考过程,也许学生表达的不完整,但毕竟是学生自己思考的结果,所以应该给予肯定,以激发学生的学习积极性,渗透一题多解的方法,培养学生思维的灵活性。
2.计算面积。
学生分组用一种方法计算图形的面积,最后全班订正。(在学习单背面完成)
教师预设点拨:观察上面的几种方法,你认为哪些方法更简单一些?你是怎样想的?
教师预设点拨:
推导平行四边形和三角形的面积公式,计算异分母分数相加减时我们都用到转化思想。今天我们学习组合图形的面积时又运用了转化的策略,看来数学的转化的思想很重要。
【设计意图】在经历了分割图形或添补图形的思考过程,并对几种方法进行比较优化以后,再动手计算,给学生提供了再一次选择解决方法的机会,比较出几种方法的特点,培养学生的质疑能力,提高学生的思维灵活性。
五、 达标检测:
1. (基本题)下面的各个图形可以转化成哪些已学过的图形?(教材76页练一练第一题)
学生自己先思考如何把这个图片转化成已经学过的图形,是分还是补?分怎么分?补如何补?
2.(必做题)试试:你知道这个图形的面积吗?
(每小格长度是1厘米)
【设计意图】让学生在认真观察的基础上,用割补的方法把图形转化成一个长方形,对转化的思想有更深刻的认识。
3. 如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
4.(必做题)如图,有一面墙,粉刷这面墙每平方米需要0.15千克涂料,一共要用多
少千克涂料?(教材76页练一练第二题)
六 、拓展延伸
1.下图是由两个正方形组成,求阴影部分的面积。(单位:米)
2.用组合图形面积的计算方法,可以解决生活中的很多问题……如中队队旗,有兴趣的同学课下可以量一量、算一算中队队旗的面积。
七、 学教反思
1.学习本课你有哪些收获?
2.你觉得这节课你表现怎么样?给自己评价一下
《组合图形的面积计算》教学反思
本节课的内容是在学生学习了平行四边形、三角形、梯形面积计算的基础上进行教学的。通过计算组合图形的面积,有利于综合利用平面图形面积计算的知识,进一步发展学生的空间观念。
成功之处:
多种方法解决问题,发展学生的创造性思维。在例4的教学中,首先让学生观察房子侧面墙的形状是有哪几个基本图形组合而成的,然后让学生独立解决问题,学生对于这类问题没有感到困难,非常轻松的解决了问题,从而得出第一种算法:(1)组合图形的面积
=三角形的面积+正方形的面积:
三角形的面积=5×2÷2=5(平米房)
正方形的面积=5×5=25(平方米)
组合图形的面积=5+25=30(平方米)
接着教师抛出问题,你还有不同的解决问题的方法吗?一石激起千层浪,学生通过教师的发问引起思考,从而出现了如下算法:
(2)组合图形的面积=2个梯形的面积:
梯形的面积=(5+5+2)×(5÷2)÷2
=12×2.5÷2=15(平方米)
组合图形的面积=15×2=30(平方米)
(3))组合图形的面积=长方形-2个三角形的面积:
长方形的面积=(5+5+2)×5=35(平方米)
2个三角形的面积=5÷2×2=5(平方米)
组合图形的面积=35-5=30(平方米)
这样通过思维的碰撞,产生出智慧的火花,同时也揭示了组合图形面积的计算方法:一是分割法:把一个组合图形分割成几个简单的规则图形,分别算出各个图形的面积,最后求出它们的面积的和。二是挖空法:把多边形看成是一个完整的规则图形,计算它的面积以后,再减去空缺部分的面积。三是割补法:就是把图形的某一部分割下来补到另一部分上,使它变成一个我们已学过的几何图形,然后再进行计算。四是折叠法:把组合图形折成几个完全相同的图形,先求出一个图形的面积,再求几个图形的面积之和。
不足之处:
学生对于多种方法的应用还存在不灵活的现象,个别学生出现拆分的图形的数据不完备,导致出现错误。
再教设计:
基本方法掌握,主要从和与差的两种方法教学会比较好一些。
因篇幅问题不能全部显示,请点此查看更多更全内容